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To study the deconfining phase transition at nonzero temperature, I suggest constructing an
effective theory for straight, thermal Wilson lines in three dimensions. This is a gauged, nonlinear
sigma model for adjoint matrices, where the temperature naturally provides an ultraviolet cutoff.
Especially near the transition, the Wilson line may undergo a Higgs effect in the deconfined phase:
as an adjoint field, this can generate eigenvalue repulsion in the effective theory.

Recent results at the Relativistic Heavy Ion Collider
(RHIC) demonstrate qualitatively new behavior for the
collisions of heavy ions at high energies [1]. RHIC ap-
pears to have entered a region above Tc, the temperature
for deconfinement, reaching up to temperatures a few
times Tc. The experimental results cannot be explained
if the transition is directly from a confined phase to a per-
turbative Quark-Gluon Plasma (pQGP). Instead, RHIC
seems to probe a novel region, which has been dubbed
the “sQGP” [2].

In this paper I sketch how to develop an effective the-
ory for the sQGP. Classically, the model is a familiar spin
system, a gauged principal chiral field [3]; beyond leading
order, it is more involved. A mean field approximation
to the effective theory gives a random matrix model [3].
Such models are dominated by eigenvalue repulsion from
the Vandermonde determinant in the measure. In fact,
for a SU(∞) gauge theory in a small volume, deconfine-
ment is driven by exactly such a mechanism [4]. I indi-
cate later how eigenvalue repulsion might arise in infinite
volume, from the Higgs effect for an adjoint matrix.

By the converse of asymptotic freedom, the running
QCD coupling, αs(T ) = g2(T )/(4π), increases as the
temperature decreases. Thus the most natural possibil-
ity is that in the sQGP, αs(T ) becomes very large as the
temperature T → T+

c . A phenomenology of a strongly
coupled, deconfined phase has developed [2].

A definitive value for αs(T ) can be obtained by match-
ing correlation functions, for the original theory in four
dimensions, with an effective theory in three dimensions
[5, 6, 7, 8, 9]:
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+ κ2 trA4

0 .

This is the Lagrangian for a massive, adjoint scalar field,
A0, coupled to static magnetic fields, Ai: A0 and Ai are
the time like and space like components of the vector po-
tential, Gij is the non-abelian magnetic field strength,
and Di = ∂i − ig[Ai, ] is the covariant derivative in the
adjoint representation. Fields and couplings are normal-
ized as in four dimensions, with the three dimensional
action

∫
d3x/T times the Lagrangian. At leading order,

integrating out the four dimensional modes generates a
Debye mass for A0, m2

D/T 2 ∼ g2, and quartic couplings,
κ1 and κ2, ∼ g4, with each a power series in g2 [10, 11].

This effective theory represents an optimal resumma-
tion of perturbation theory. As such, it applies only when
fluctuations in A0 are small. Computing the pressure to
four loop order, ∼ α3

s, the results are complete up to one
undetermined constant [9]. Even with the most favor-
able choice for this constant, however, the pressure does
not agree with results from numerical simulations on the
lattice below temperatures of ∼ 3Tc [6, 7].

These computations are done in imaginary time, where
the “energies” are multiples of 2πT . Thus the coupling
constant αs(T ) runs with a scale which is of order ∼
2πT [5]. Computations to two loop order show that even
better, this mass scale is ∼ 9T [7]. For Tc ∼ 175 MeV,
this is ∼ 1.6 GeV; at 3Tc, it is ∼ 4.7 GeV. While these
mass scales are not asymptotic, neither are they in a non-
perturbative regime: e.g., αs(1.6 GeV) ∼ 0.28 [7]. Hence
the question becomes, why does this effective theory fail
between Tc and ∼ 3Tc, when the coupling is not that
large?

To see how this might occur, consider a straight, ther-
mal Wilson line,

L(x, τ) = P e
ig

∫ τ

0

A0(x, τ ′) dτ ′

, (2)

where P denotes path ordering, x is the spatial position,
and τ , the imaginary time, runs from 0 to 1/T . A closed
loop is formed by wrapping all of the way around in imag-
inary time, L(x, 1/T ); as this quantity arises frequently,
I denote it by L(x).

The Wilson line is a matrix in color space, and so is not
directly gauge invariant: under a gauge transformation
U(x, τ), L(x) → U†(x, 1/T )L(x)U(x, 0). The trace of the
Wilson line is gauge invariant, and is the Polyakov loop
in the fundamental representation. Normalizing so that
this loop is one when A0 = 0, then its expectation value
should be near one if gA0/(2πT ) is small. Numerical
simulations of a lattice SU(3) gauge theory show that
while the expectation value of the renormalized triplet
loop is near one at 3Tc, this is not so when T < 3Tc.
Without dynamical quarks, it drops to a value of ≈ 0.45
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at Tc [12, 13], while its value with dynamical quarks is
similar [14].

Since the triplet loop is significantly less than one be-
tween Tc and ∼ 3Tc, in this region it is necessary to
extend the program of [5, 6, 7, 8, 9] to construct an
effective, three dimensional theory for arbitrary values
of gA0/(2πT ). While A0 can be large, as the effective
theory only applies for distances � 1/T , we can as-
sume that all spatial momenta are small relative to 2πT
[15, 16, 17, 18, 19, 20, 21]. This is like chiral pertur-
bation theory, with temperature playing the role of the
pion decay constant.

As a theory in three dimensions, this effective model
should be invariant with respect with static gauge trans-
formations. In addition, there are certain time dependent
gauge transformations which are central in constraining
the form of the effective Lagrangian. For definiteness, I
take the gauge group to be SU(N). Consider

Uc(τ) = e2πi τT tN , tN = diag(1 . . . 1, 1−N) ; (3)

tN is a traceless, diagonal N ×N matrix. This is strictly
periodic in imaginary time, Uc(1/T ) = Uc(0) = 1N ,
where 1N is the unit matrix.

This particular transformation is related to that for
a global Z(N) transformation, which arises because a
SU(N) group has a nontrivial center [20, 21, 22, 23].
Whether or not the gauge group has a center symmetry
[23], though, is irrelevant. Simply because they do not
alter the boundary conditions in imaginary time, strictly
periodic, but topologically non trivial [24], gauge trans-
formations are allowed for any gauge group, coupled to
arbitrary matter fields.

In four dimensions, the electric field is DiA0 − ∂0Ai.
Under (3), diagonal elements of A0 are shifted by a con-
stant amount, Adiag

0 → Adiag
0 +2πTtN/g, while off diago-

nal elements of A0 and Ai rotate. Thus if tN 6= 1N , DiA0

changes when Ai 6= 0. Of course, this is compensated by
the time dependent rotation of the Ai in −∂0Ai.

This also shows that the electric field term in (2) is not
invariant under (3): when Ai 6= 0, DiA0 changes when
Adiag

0 shifts, but now there are no time derivatives of Ai

to compensate. Since the shift is ∼ 1/g, this is fine at
small A0, but is unacceptable at large A0 [25, 26, 27].

The significance of these large gauge transformations
can be understood by looking at the Wilson line. Since
it is a SU(N) matrix, L†(x)L(x) = 1N , it can be diago-
nalized by a unitary transformation,

L(x) = Ω(x)† eiλ(x) Ω(x) . (4)

Here λ(x) is a diagonal matrix, with elements λa, a =
1 . . . N . As det(L) = 1, trλ(x) = 0, modulo 2π. Under
static gauge transformations, U(x, τ) = U(x), the Wilson
line transforms homogeneously, L(x) → U†(x)L(x)U(x),
and Ω is gauge dependent, Ω(x) → Ω(x)U(x) [28].

While the λa are invariant under static gauge trans-
formations, under time dependent gauge transformations
such as (3), they shift by by integral multiples of 2π,
λ → λ + 2πtN [22]. Thus transformations such as (3)
ensure that the λa’s are periodic variables.

The effective Lagrangian must respect this periodicity.
This is automatic if it is constructed from the Wilson
line, with eigenvalues eiλa . What, then, to take for the
effective electric field? I suggest

Ei(x) = T/(ig) L†(x)DiL(x) . (5)

Like the original electric field, Ei transforms homoge-
neously under static gauge transformations; it is her-
mitean (and so is not ∼ DiL); it is center symmetric,
if such a symmetry is present [22]; and lastly, it reduces
to the expected form, Ei ≈ DiA0, for small, static A0. In
mathematics, (5) is known as the left invariant one form
of L [29].

Using the properties of path ordering, the effective
electric field can be written as

Ei(x)/T =
∫ 1/T

0

dτ L(x, τ)† ∂iA0(x, τ) L(x, τ)

− L(x, 1/T )† [Ai(x),L(x, 1/T )] . (6)

Up to the various Wilson lines — which are, after all,
phase factors in the gauge group — this is a plausible
form for a gauge covariant electric field formed by “aver-
aging” over τ .

With this Ei, to leading order in αs the effective La-
grangian is

Leff
classical(Ai,L) = trG2

ij/2 + (T 2/g2) tr
∣∣L†DiL

∣∣2 . (7)

This “classical” Lagrangian is that of a gauged, nonlinear
sigma model [3]. The theory is non-renormalizeable, but
this is of no concern, as this effective theory is valid only
for distances � 1/T . On the lattice, the analogue of (7)
is well known [30]. While I discussed (7) previously [18],
the basic point of this paper is that (5) is, identically, the
correct electric field for L. For a related linear model, see
[31].

Using the decomposition of the Wilson line in (4), the
electric field term is proportional to

tr |DiL|2 = tr (∂iλ)2 + tr
∣∣[Ω Di Ω†, eiλ

]∣∣2 . (8)

The first term on the right hand side is the same as
for an abelian theory, where Ei ∼ e−iλ ∂i eiλ ∼ ∂iλ.
Since eiλ is invariant under static gauge transformations,
Ω(x) Di Ω†(x) must be as well: Ω(x) → Ω(x)U(x) and
Di → U†(x) Di U(x) [28]. Hence the second term repre-
sents the gauge invariant coupling between the electric
and magnetic sectors in the non abelian effective theory.

The instanton number in four dimensions carries over
directly to the effective theory. Start with a smooth,
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strictly periodic classical field, Aµ(x, τ), and then trans-
form to A0 = 0 gauge. The gauge transformation
which does this is just L(x, τ), (2). The instanton num-
ber is then a difference of Chern-Simons terms between
τ = 1/T and 0 [15]. One can show that the instanton
number equals the winding number of the Wilson line,
=

∫
d3x εijk tr (BiBjBk)/(24π2) , Bi = L†∂iL, which is

an integer.
I propose that this effective Lagrangian is most use-

ful in the deconfined phase, at temperatures below that
where the Lagrangian of (2) fails: that is, from ∼ 3Tc

down to Tc, and for some region below Tc. At low tem-
peratures, though, purely on geometric grounds it cannot
suffice to include only straight Wilson lines. Eventually,
Wilson lines which oscillate in time contribute, while at
zero temperature, only closed loops matter.

The form of the effective theory is fixed by computing
in a large but slowly varying A0 field, and then comparing
the result with the same exercise in the original theory
[15, 16, 17, 18, 19, 20, 21]. The first step is to compute
for constant L at one loop order. In a U(N) gauge theory,
(D3) of [15],

Leff
1 loop,∂iL=0 = − 2 T 4

π2

∞∑
m=1

1
m4

|trLm|2 . (9)

For constant L, the pressure is minus the value of the ef-
fective Lagrangian. For the perturbative vacuum, where
L = 1N , we obtain the pressure for an ideal U(N) gas,
pideal = −Leff

1 loop(1N ) = +N2π2T 4/45. Since each term
in the series is negative, the minimum is given by the
perturbative vacuum.

Matching the four dimensional theory to the effective
theory is straightforward in principle, but technically in-
volved. Terms for constant L correct (9); terms with two
derivatives, of Ai and L, correct the classical action, (7),
plus new terms [17, 18, 19, 20, 21]; there are also terms
with four derivatives [20], etc.. All such terms should be
expressed in terms of loops and powers of Ei and Gij .
Examples are given in [4, 26, 27]. As they arise from
integrals in four dimensions, they form a power series in
αs.

Since it is stable to leading order in αs, though, the
perturbative vacuum remains stable order by order in
perturbation theory. What, then, of confinement in a
SU(N) gauge theory without quarks? This is related
to the breaking of a global Z(N) symmetry in the de-
confined phase: under a Z(N) transformation, L → zL,
where z = e2πi/N [22]. Consider the diagonal SU(N)
matrix

Lc = diag(1, z, z2 . . . zN−1) . (10)

Of the loops constructed from Lc, only those which are
Z(N) neutral are nonzero: if n is an integer, tr (Lc)mn =
0 when m = 1 . . . (N−1), while tr (Lc)nN = N . Hence Lc

might represent the confined vacuum [16, 32, 33]. How-
ever, at leading order, (9), this state has negative pres-
sure, = −Leff

1 loop(Lc) = −(1 − 1/N2)π2T 4/45. Thus for
any finite N , Lc is not a physical vacuum state.

It is at infinite N . As N →∞, the pressure is ∼ N2 in
the deconfined phase, but only ∼ 1 in the confined phase
[4, 32, 33]. Thus the negative pressure of Lc, which is ∼ 1
as N →∞, represents a correction ∼ 1/N2 to that of the
deconfined phase. While (9) is only valid at leading order,
as all traces of Lc vanish at infinite N , when N → ∞,
the pressure of Lc remains ∼ 1, to all orders in αsN [33].

At infinite N , Lc is familiar from matrix models:
all eigenvalues appear, uniformly spread out [3, 4, 32].
As discussed above, although the complete effective La-
grangian is much more complicated than (7) and (9),
the perturbative vacuum remains stable to all orders in
perturbation theory. Thus, at least at infinite N , as
T → T+

c , what drives the transition to a confining phase?
The answer is clear if space is a (very) small sphere [4].

Integrating out all non constant modes, one is left with a
single integral, for the constant mode. This is equivalent
to a random matrix model [3], where the Vandermonde
determinant, in the measure of the integral for the con-
stant mode, naturally produces eigenvalue repulsion, and
drives the transition. In infinite volume, though, terms
in the measure vanish with dimensional regularization.

To represent the non-perturbative effects which
destablize the perturbative vacuum as T → T+

c , by hand
I add to the effective Lagrangian

Leff
non−pert.(L) = + Bf T 2 |trL|2 . (11)

This term is motivated by precise numerical simulations
of a lattice SU(3) gauge theory without quarks [34]. I
term Bf the “fuzzy bag constant”: like the MIT bag
constant, B, Bf is manifestly non-perturbative in origin.
It has dimensions of mass squared, and so is a pure num-
ber times T 2

c . In (11) I write the simplest term of many,
such as |trL2|2, etc..

After (11) is added to the effective Lagrangian, the
vacuum is no longer L = 1N , where all eigenvalues are
equal. Instead, the minimum of the loop potential is for
some fixed value of tr L/N < 1, in which some eigen-
values are unequal. This produces a Higgs phase for
the adjoint field L: in perturbation theory, the diago-
nal magnetic gluons remain massless, while off diagonal
gluons acquire masses. These masses are characteristic
of an adjoint field, and involve differences of eigenval-
ues. Thus when the fluctuations in Ai and L are inte-
grated out to one loop order (this is easiest in unitary
gauge), the massive gauge fields contribute a new term,
∼ −

∑N
a,b=1(g

2|eiλa − eiλb |2)3/2. The sign is physical,
and corresponds to eigenvalue repulsion. For a theory in
three dimensions, this one loop calculation is not defini-
tive. Most importantly, since near Tc magnetic glue-
balls are heavy [11], the Higgs effect probably just splits
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the masses of heavy magnetic glueballs by some amount.
This is best measured from correlation functions of spa-
tial plaquettes “split” in time, between τ = 0 and 1/T .

This paper is a small step towards the systematic con-
struction of an effective Lagrangian for straight, thermal
Wilson lines. Understanding deconfinement with this ef-
fective Lagrangian might be possible analytically at infi-
nite N ; small N surely requires numerical simulations on
the lattice. An essential matter is how eigenvalue repul-
sion is generated in the effective theory. As I remarked
above, in infinite volume terms in the measure vanish
with dimensional regularization. The effective theory,
however, has a physical cutoff set by the temperature,
so perhaps a mean field ansatz is a reasonable first guess
[13, 26, 35].

Assuredly, deconfinement provides a variety of novel
and rich phase transitions for study.
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